Evaluating Classifiers and Annotating Data

Kenneth (Kenny) Joseph

Announcements

- Quiz 6 is "out"
- Midterm is Thursday
 - In class
 - One page handwritten notes, front and back
 - Nothing else (except pen/pencil)
- Two quick review things
- Questions?

Evaluating Classification Models

- How should we evaluate (part 1)?
- ✓ What is the best we can do?
- → What is the worst we can do?
 - Class Imbalances
- How should we evaluate (part 2)?
 Dealing w/ Class Imbalance through Modeling

UB has created a predictive algorithm to determine who should be admitted to the CSE MS program.

The algorithm takes the ACE score and School Ranking as features, and past decisions on admissions as the outcome

The algorithm is used to **admit or reject students** starting next year

Back to regression

How would we evaluate this with regression, i.e. what would our evaluation metric be?

Evaluating classification models

The Confusion Matrix

School of Engineering and Applied Sciences

https://en.wikipedia.org/wiki/Precision_and_recall

Accuracy – how many did we get correct?

8

School of Engineering and Applied Sciences

@_kenny_joseph

What is the best we can do?

@ kennv iosep

Discussion follows: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

Discussion follows: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

@ kennv iosep

The problem with class imbalance

The problem with class imbalance

University at Buffalo

Department of Computer Science

School of Engineering and Applied Sciences

ACT Score

@_kenny_joseph

Aside - dealing with class imbalance

Will cover, along with a few other things, in a "practical issues" lecture at some point after the break

Department of Computer Science and Engineering

@ kenny josepl

Precision - Of + guesses, how many actually + s?

@_kenny_joseph

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

To compute precision and recall, you have to pick a class!

ACT Score

To compute precision and recall, you have to pick a class!

School Ranking

@_kenny_joseph

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

17

Which would you prefer?

ACT Score

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

There are many other metrics

		Predicted co	ondition	Sources: [20][21][22][23][24][25][26][27] view-talk-edit					
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	$\frac{\text{Prevalence threshold (PT)}}{= \frac{\sqrt{\text{TPR} \times \text{PR}} - \text{FPR}}{\text{TPR} - \text{FPR}}}$				
ondition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate = $\frac{FN}{P} = 1 - TPR$				
Actual c	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$				
	$\frac{\text{Prevalence}}{=\frac{P}{P+N}}$	Positive predictive value (PPV), precision $= \frac{TP}{PP} = 1 - FDR$	False omission rate (FOR) = $\frac{FN}{PN} = 1 - NPV$	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR–) = <u>FNR</u> TNR				
	Accuracy (ACC) = $\frac{TP + TN}{P + N}$	False discovery rate (FDR) = $\frac{FP}{PP}$ = 1 - PPV	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 – FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$				
	Balanced accuracy (BA) = $\frac{\text{TPR} + \text{TNR}}{2}$	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = $\sqrt{PPV \times TPR}$	Matthews correlation coefficient (MCC) = √TPR×TNR×PPV×NPV – √FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = $\frac{TP}{TP + FN + FP}$				

https://en.wikipedia.org/wiki/Confusion_matrix

Many different metrics ... we'll dive into a few now, but not all

Critical Idea: Accounting for Thresholds

Remember that, e.g., logistic regression predicts a continuous value, and then we threshold Score(x) < threshold: -1

The threshold is in some ways a hyperparameter ... we can get different, e.g., accuracies with different thresholds.

Looking at Thresholds, V1: Precision/Recall Curve

Looking at Thresholds, V1: Precision/Recall Curve

How to summarize this?

Looking at Threshold Changes, V2: ROC Best Tije Posilije Rote #Tire Posities TEJEP + FN Folse Possilive Rate University at Buffalo Department of Computer Science and Engineering 24 @_kenny_joseph chool of Engineering and Applied Sciences

Looking at Threshold Changes, V2: ROC 🖉

How to summarize this?

$$AUC(f) = rac{\sum_{t_0 \in \mathcal{D}^0} \sum_{t_1 \in \mathcal{D}^1} \mathbf{1}[f(t_0) < f(t_1)]}{|\mathcal{D}^0| \cdot |\mathcal{D}^1|},$$

Looking at Threshold Changes, V3: Precision @ k

Final idea: State a number k of observations that you care about, look at precision there
 Where might this be useful? State a number k of observations that you care about, look at precision there

Tpredicted probability

@ kenny josepl

• Where might this be useful? Soon P(Y X)

Pick k := 10 What i've of the lop k are t Recium

University at Buffalo Department of Computer Science and Engineering School of Freeineering and Applied Sciences

Which metric do we want?

Evaluation Review

- Big ideas:
 - Olifferent metrics for different things
 - Evaluation metrics != loss function
 - Beware of class imbalances,
 - Use a lot of metrics!
 - But ultimately, the right metric is tied to your
 application area

What is missing from these evaluations?

Adding a new feature: height

Geoffrey Hinton @geoffreyhinton

Suppose you have cancer and you have to choose between a black box AI surgeon that cannot explain how it works but has a 90% cure rate and a human surgeon with an 80% cure rate. Do you want the AI surgeon to be illegal?

3:37 PM · Feb 20, 2020 · Twitter Web App

1,125 Retweets 615 Quote Tweets 5,065 Likes

...

https://twitter.com/JonBoeckenstedt/status/1447584690932629511/photo/1

Annotation

Annotation Discussion - Overview

Where do annotations come from?

- How do you know if they're any good?
 - Accuracy on downstream "expert annotated" data
 - Agreement
 - Percent agreement
 - Krippendorf

Can we do annotation differently?

- Aggregation models
- Snorkel, etc.
- Considering annotator demographics

@ kenny ios

Where does data come from?

- Ultimately, most datasets come from people
- What might be problematic about that?

Where do annotations come from?

Challenges with crowd annotation

- How can you incentivize good-faith labels?
 How do you know that you're getting good faith labels?
- How do you aggregate responses across a bunch of people?

Incentivizing Good-faith Labels

Treat people with respect Pay them Be nice to them

Ensuring Good-faith Labels

Gold standards – have some observations you know the
 answer to

- Attention checks have some questions like "are you awake"
- Redundancy make sure multiple annotators per observation
- Really, redundancy + agreement statistics

Agreement Statistics

Pairwise agreement: basically, accuracy per annotator
A B
% of observations
Where they agree
Krippendorf's Alpha

Krippendorf's Alpha

	annotator_id	1	2	3	4	5	6	7	8	9	10	11	12
	А	1	2	3	3	2	1	4	1	2	nan	nan	nan
	В	1	2	3	3	2	2	4	1	2	5	nan	3
	С	nan	3	3	3	2	3	4	2	2	5	1	nan
	D	1	2	3	3	2	4	4	1	2	5	1	nan
be		late	(1	-)	the di	e r	at	io	be	etv	veei	า:	

De – disagreement by chance

University at Buffalo Department of Computer Science and Engineering School of Envineering and Applied Sciences https://www.lighttag.io/blog/krippendorffs-alpha/

Krippendorf's Alpha (cont.)

											1	
annotator_id	1	2	3	4	5	6	7	8	9	10	1	12
A	1	2	3	3	2	1	4	1	2	nan	nan	nan
В	1	2	3	3	2	2	4	1	2	5	nan	
С	nan	3	3	3	2	3	4	2	2	5	1	nan
D	1	2	3	3	2	4	4	1	2	5	1	nan

 $\overline{}$

University at Buffalo Department of Computer Science and Engineering School of Engineering and Apolled Sciences https://www.lighttag.io/blog/krippendorffs-alpha/

Krippendorf's Alpha - observed

Krippendorf's Alpha – by chance

	1	2	3	4	5	6	7	8	9	10	11	12	
1	3	0	0	0	0	1	0	3	0	0	2	0	Χ,
2	0	3	0	0	4	1	0	1	4	0	0	0	J_
3	0	1	4	4	0	1	0	0	0	0	0	1	V ₃
4	0	0	0	0	0	1	4	0	0	0	0	0	Jy
5	0	0	0	0	0	0	0	0	0	3	0	0	Vz

 $V_{1} \cdot V_{2} + V_{1} \cdot V_{3} - - -$

University at Buffalo Department of Computer Science and Engineering School of Engineering and Apolled Sciences https://www.lighttag.io/blog/krippendorffs-alpha/

Krippendorf's Alpha – simple, worked through

More recently, people have come up with better ways

Figure 2: Plate diagram of the Dawid and Skene model.

 c_i y_{in} N_i I c_j J

Figure 3: Plate diagram for the MACE model.

@ kenny joseph

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

46

Moving forward: Smarter Annotation...

- Data Programming & Weak Supervision
- Data Augmentation
- Self-Supervision
- Data Selection

More: https://github.com/HazyResearch/data-centric-ai

Active learning

