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@_kenny_joseph

Announcements

§Quiz 6 is “out”
§Midterm is Thursday

§ In class
§One page handwritten notes, front and back
§Nothing else (except pen/pencil)

§Two quick review things
§Questions?
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@_kenny_joseph

Evaluating Classification Models
§How should we evaluate (part 1)?
§What is the best we can do?
§What is the worst we can do?
§Class Imbalances
§How should we evaluate (part 2)?
§Dealing w/ Class Imbalance through Modeling
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UB has created a predictive algorithm to 
determine who should be admitted to the CSE 

MS program. 

The algorithm takes the ACT score and School 
Ranking as features, and past decisions on 

admissions as the outcome

The algorithm is used to admit or reject students
starting next year
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@_kenny_joseph

Back to regression

§How would we evaluate this with regression, i.e. what 
would our evaluation metric be?
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@_kenny_joseph

Evaluating classification models

3/15/22 UB6

Our guess:

“Truth”
8 3

72
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@_kenny_joseph

The Confusion Matrix

7

https://en.wikipedia.org/wiki/Precision_and_recall



@_kenny_joseph

Accuracy – how many did we get correct?
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Our guess:

“Truth”
8 3

72
Accuracy = 

(8 + 7) / (8 + 7 + 2 + 3)            
= .75

ACT Score

School 
Ranking
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@_kenny_joseph

What is the best we can do?
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The Bayes optimal classifier

Discussion follows: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html
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@_kenny_joseph

What is the worst we can do?
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Discussion follows: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html

Always compare to the simple baseline for your model
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@_kenny_joseph

The problem with class imbalance
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Our guess:

“Truth”
1 1

71
What is our accuracy?

ACT Score

School 
Ranking
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@_kenny_joseph

The problem with class imbalance

3/15/22 UB12

Our guess:

“Truth”
1 1

71
Is this really a good 
classifier?
How does a majority 
classifier do?

ACT Score

School 
Ranking 0

Not really
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@_kenny_joseph

Aside – dealing with class imbalance

Will cover, along with a few other things, in a “practical issues” lecture at 
some point after the break
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https://imbalanced-learn.org/stable/over_sampling.html
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@_kenny_joseph

Precision - Of + guesses, how many actually +s?
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Our guess:

“Truth”
8 3

72
Precision = 

7 / (7 + 3) = .7
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@_kenny_joseph

Recall - Of actual +, how many do we guess?

3/15/22 UB15

Our guess:

“Truth”
8 3

72
Recall = 

7 / (7 + 2) = .78

Recall of class
8 8 3

8D



@_kenny_joseph

To compute precision and recall, you have 
to pick a class!
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@_kenny_joseph

To compute precision and recall, you have 
to pick a class!
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@_kenny_joseph

Which would you prefer?
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ACT Score
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@_kenny_joseph

There are many other metrics

Many different metrics … we’ll dive into a few now, but not 
all
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https://en.wikipedia.org/wiki/Confusion_matrix
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@_kenny_joseph

Critical Idea: Accounting for Thresholds
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Remember that, e.g., logistic regression 
predicts a continuous value, and then we 
threshold

The threshold is in some ways a 
hyperparameter … we can get different, 
e.g., accuracies with different thresholds.  
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@_kenny_joseph

Looking at Thresholds, V1: Precision/Recall Curve
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@_kenny_joseph

Looking at Thresholds, V1: Precision/Recall Curve

§What does the best 
classifier look like?
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§Which is the better 
classifier?

I
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@_kenny_joseph

Looking at Thresholds, V1: Precision/Recall Curve

§How to summarize this?
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D
A metric that unifies precision t recall
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@_kenny_joseph

Looking at Threshold Changes, V2: ROC
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@_kenny_joseph

Looking at Threshold Changes, V2: ROC

§How to summarize this?
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@_kenny_joseph

Looking at Threshold Changes, V3: 
Precision @ k
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§ Final idea: State a number k of observations that you care 
about, look at precision there

§Where might this be useful? season

Rank predictions ply d
I predicted probability

Pick k 10

whottoortp.II.IE



@_kenny_joseph

Which metric do we want?

§Diagnosing cancer
§Putting someone in jail
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@_kenny_joseph

Evaluation Review

§Big ideas:
§Different metrics for different things
§Evaluation metrics != loss function
§Beware of class imbalances
§Use a lot of metrics! 
§But ultimately, the right metric is tied to your 

application area
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What is missing from these 
evaluations?
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Adding a new feature: height
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https://twitter.com/JonBoeckenstedt/status/1447584690932629511/photo/1
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Annotation
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@_kenny_joseph

Annotation Discussion - Overview

§Where do annotations come from?
§How do you know if they’re any good?

§ Accuracy on downstream “expert annotated” data
§ Agreement

§ Percent agreement
§ Krippendorf

§Can we do annotation differently?
§ Aggregation models 
§ Snorkel, etc.
§ Considering annotator demographics
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@_kenny_joseph

Where does data come from?

§Ultimately, most datasets come from people
§What might be problematic about that?
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@_kenny_joseph

Where do annotations come from?
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“Expert” Annotators (e.g. domain experts)

…GEE
E



@_kenny_joseph

Challenges with crowd annotation

§How can you incentivize good-faith labels?
§How do you know that you’re getting good faith labels?
§How do you aggregate responses across a bunch of 

people?
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@_kenny_joseph

Incentivizing Good-faith Labels

§Treat people with respect
§Pay them
§Be nice to them
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@_kenny_joseph

Ensuring Good-faith Labels

§Gold standards – have some observations you know the 
answer to

§Attention checks – have some questions like “are you 
awake”

§ Redundancy – make sure multiple annotators per 
observation

§ Really, redundancy + agreement statistics
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@_kenny_joseph

Agreement Statistics

§ Pairwise agreement: basically, accuracy per annotator

§ Krippendorf’s Alpha
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@_kenny_joseph

Krippendorf’s Alpha
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Calculate (1-) the ratio between:

Do – observed disagreements
De – disagreement by chance

https://www.lighttag.io/blog/krippendorffs-alpha/
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@_kenny_joseph

Krippendorf’s Alpha (cont.)
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https://www.lighttag.io/blog/krippendorffs-alpha/
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@_kenny_joseph

Krippendorf’s Alpha - observed
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https://www.lighttag.io/blog/krippendorffs-alpha/
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@_kenny_joseph

Krippendorf’s Alpha – by chance
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https://www.lighttag.io/blog/krippendorffs-alpha/
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@_kenny_joseph

Krippendorf’s Alpha – simple, worked through
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https://repository.upenn.edu/cgi/viewcontent.cgi?ar
ticle=1043&context=asc_papers



@_kenny_joseph

Aggregation

§ The most common approach is majority vote
§More recently, people have come up with better ways
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https://watermark.silverchair.com/tacl_a_00040.pdf
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@_kenny_joseph

Moving forward: Smarter Annotation…

§Data Programming & Weak Supervision
§Data Augmentation
§ Self-Supervision
§Data Selection

§More: https://github.com/HazyResearch/data-centric-ai
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Active learning


